抽签先后顺序概率计算方法概率问题结果(任何人抽签的概率是相同的吗)
抽签时先抽和后抽中签的几率是相等的还是不等的?
最后是D,依照上面的计算方法,D的中奖概率为1/4乘以1,同样是1/四、抽签优缺点 抽签法又称“抓阄法”,它是先将调查总体的每个单位编号,紧接着采用随机的方式方法任意抽取号码,直到抽足样本。
于是“第2个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。抽签的先后顺序与结果无关 使用类似的办法可以证明,从此以后每一个人中签的机会都是m/n。其实也就是说此问题还有更简单容易的想法。
证明:由于即便第1个抽的抽到有物签,另一人还是有机会抽中有物签。先抽抽到有物签概率为2/5;后抽抽到有物签概率:若先抽抽到有物签则有1/4,若先抽抽到白签,有1/二、
抽签后抽好还是先抽好?里边 的概率问题是如何的?
看情况,假如前面都没抽到后抽好。由于越往后概率越高。假如前面奖品比较集中被抽到那后抽肯定就不好了,由于都业已被别人抽走了。假如还没人抽就无所谓了,按道理来讲概率是相同的。
最后是D,依照上面的计算方法,D的中奖概率为1/4乘以1,同样是1/四、抽签优缺点 抽签法又称“抓阄法”,它是先将调查总体的每个单位编号,紧接着采用随机的方式方法任意抽取号码,直到抽足样本。
抽签时先抽和后抽中奖的几率是相同的。抽签时不管谁抽到签都不打开,先抽和后抽的中奖概率是相同的;假如第1个人抽签后打开最终,则后面的人抽签中奖的概率与本题中的中奖概率是不一样的问题。
抽签时先抽和后抽概率一样吗
于是“第2个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。抽签的先后顺序与结果无关 使用类似的办法可以证明,从此以后每一个人中签的机会都是m/n。其实也就是说此问题还有更简单容易的想法。
于是“第2个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。抽签的先后顺序与结果无关 使用类似的办法可以证明,从此以后每一个人中签的机会都是m/n。其实也就是说此问题还有更简单容易的想法。
证明:由于即便第1个抽的抽到有物签,另一人还是有机会抽中有物签。先抽抽到有物签概率为2/5;后抽抽到有物签概率:若先抽抽到有物签则有1/4,若先抽抽到白签,有1/二、
抽签时先抽和后抽中奖的几率是相同的。抽签时不管谁抽到签都不打开,先抽和后抽的中奖概率是相同的;假如第1个人抽签后打开最终,则后面的人抽签中奖的概率与本题中的中奖概率是不一样的问题。
在这几个排列中,要确保第2个人中签,他一共有m种抽法。而这样第1个人可以从剩下的n-1个签中任意选择,故确保第2个人抽中的方式方法一共有m(n-1)种。
其实也就是说此问题还有更简单容易的想法。无论这几个人怎么抽签,他们最后抽出来的结果不外乎是n个签的一个排列组合而已。在这个排列组合中没有任何一个位置比别人特殊,于是每个位置中签的可能性必定是相等的。
第1个抽签的看了结果后第2自个的概率算法
按甲、乙、丙顺序抽 假如甲抽到了“无”,那么抽签就直接完结了 题目说乙抽到了“有”,那么意思就是乙参与了抽签,那么一定是甲抽到了“有”的前提下。
依照老师的算法,任何人抽到“上上签”的概率都是1/假如第1个人告知了第2个人没有抽到上上签,实质是第2个人在五个签中抽得唯一上上签,若概率当然就或许应该是1/而不是由于记忆的改变而作用与影响了结果。
于是,无论第1人,第2人是否抽着奖,第3人抽着奖的概率仍是110,所以10人抽签无论先抽还是后抽,抽着奖的概率是相同的,机会是相同的。
抽签概率题…
换个解释也可以:你可以简单容易的看出任何人抽不中的概率都是2/3)所以选B,任何人抽中的机会都是1/3,任何人抽不中的机会都是2/3,因此抽签是公平的。
在这个排列组合中没有任何一个位置比别人特殊,于是每个位置中签的可能性必定是相等的。抽签选择是一种较公平的抉择方法,在不公布结果的情形下,抽签先后顺序是不会作用与影响中奖概率的。
此问题叫 coupon collector 问题。n 个球,收集全的平均次数是:n * ln(n)你这里将 n=12 代进去就能够。至于过程,最好就是搜索一下 coupon collector,有许多资料。


